\quad

\quad

求反常积分

01(1+x2)(1+xα)dx\int_0^\infty\frac{1}{(1+x^2)(1+x^\alpha)}\text{d}x.

\quadx=1tx=\frac{1}{t},则

0+1(1+x2)(1+xα)dx=0+tα(1+t2)(1+tα)dt=0+xα(1+x2)(1+xα)dx=120+1+xα(1+x2)(1+xα)dx=120+11+x2dx=π4.\begin{aligned} \int_0^{+\infty}\frac{1}{(1+x^2)(1+x^\alpha)}\text{d}x &= \int_0^{+\infty}\frac{t^\alpha}{(1+t^2)(1+t^\alpha)}\text{d}t \\ &= \int_{0}^{+\infty}\frac{x^\alpha}{(1+x^2)(1+x^\alpha)}\text{d}x\\ &= \frac{1}{2}\int_0^{+\infty}\frac{1+x^\alpha}{(1+x^2)(1+x^\alpha)}\text{d}x\\ &= \frac{1}{2}\int_0^{+\infty}\frac{1}{1+x^2}\text{d}x=\frac{\pi}{4}. \end{aligned}

求级数的敛散性

n=1sinn2+1πn\sum_{n=1}^{\infty}\frac{\sin\sqrt{n^2+1}\pi}{\sqrt{n}}.

an=sin[nπ+(n2+1n)π]n=(1)nsinπn2+1+nn\begin{aligned} a_n &= \frac{\sin [n\pi+(\sqrt{n^2+1}-n)\pi]}{\sqrt{n}}\\ &=(-1)^n\frac{\sin\frac{\pi}{\sqrt{n^2+1}+n}}{\sqrt{n}} \end{aligned}

根据莱布尼茨判别法,原级数收敛。

nn趋于无穷时,

an=sinπn2+1+nnπn2+1+nnπ21n32\begin{aligned} |a_n| &= \frac{\sin\frac{\pi}{\sqrt{n^2+1}+n}}{\sqrt{n}}\sim\frac{\frac{\pi}{\sqrt{n^2+1}+n}}{\sqrt{n}}\sim\frac{\pi}{2}\frac{1}{n^\frac{3}{2}} \end{aligned}

故原级数绝对收敛。

求级数n=1x2n+3n(n+1)\sum_{n=1}^{\infty}\frac{x^{2n+3}}{n(n+1)}1<x<1-1<x<1内的和函数

n=1x2n+3n(n+1)=n=1x2n+3nn=1x2n+3(n+1)=x3n=1x2nnxn=1x2n+2n+1\begin{aligned} \sum_{n=1}^{\infty}\frac{x^{2n+3}}{n(n+1)} &= \sum_{n=1}^{\infty}\frac{x^{2n+3}}{n} - \sum_{n=1}^{\infty}\frac{x^{2n+3}}{(n+1)}\\ &=x^3\sum_{n=1}^{\infty}\frac{x^{2n}}{n} - x\sum_{n=1}^{\infty}\frac{x^{2n+2}}{n+1} \end{aligned}

ln(1x)=n=1xnn\ln(1-x)=-\sum_{n=1}^\infty\frac{x^n}{n}

上式=x3ln(1x2)x(n=0(x2)n+1n+1x2)=x3ln(1x2)x(n=1x2nnx2)=x3ln(1x2)x(ln(1x2)x2)=(xx3)ln(1x2)+x3\begin{aligned} \text{上式} &= -x^3\ln(1-x^2) - x(\sum_{n=0}^{\infty}\frac{(x^{2})^{n+1}}{n+1}-x^2)\\ &= -x^3\ln(1-x^2) - x(\sum_{n=1}^{\infty}\frac{x^{2n}}{n}-x^2)\\ &=-x^3\ln(1-x^2)-x(-\ln(1-x^2)-x^2)\\ &=(x-x^3)\ln(1-x^2)+x^3 \end{aligned}

求级数n=0n+1n!xn\sum_{n=0}^\infty\frac{n+1}{n!}x^n的和函数

n=0n+1n!xn=xn=1xn1(n1)!+n=0xnn!=xex+ex\begin{aligned} \sum_{n=0}^\infty\frac{n+1}{n!}x^n&= x\sum_{n=1}^\infty\frac{x^{n-1}}{(n-1)!}+\sum_{n=0}^\infty\frac{x^n}{n!}\\ &=xe^x+e^x \end{aligned}